

Angewandte Corrigendum

Low-Temperature Isolation of An Azidophosphenium Cation

Angew. Chem. Int. Ed. 2012, 51

DOI: 10.1002/anie.201201851

In Table 1 of this Communication, the last line was misprinted. The table with the correct $Q_{\rm CT}^{\rm tot}$ values is depicted here.

Table 1: Calculated partial charges [e] and charge transfer Q_{CT}^{tot} [e] in an isolated ion pair of **1**, **2a–c**, and **4**^[14b] along with partial charges of the $[(Me_3Si)_2N=P-X]^+$ ion.^[a]

'	1	2a	2 b	2c	4
q(P _{salt})	1.05	1.19	1.21	1.19	1.41
$q(N_{amino, salt})$	-1.65	-1.54	-1.51	-1.52	-1.51
$q(X_{salt})^{[a]}$	-0.31	-0.21	-0.20	-0.17	-0.33
$q(P_{cat})$	1.24	1.26	1.20	1.20	1.37
$q(N_{amino, cat})$	-1.49	-1.52	-1.46	-1.46	-1.47
$q(X_{cat})^{[a]}$	-0.18	-0.18	-0.18	-0.17	$-0.31^{[e]}$
$Q_{ct}^{tot[b]}$	0.66[c]	$0.19^{[d]}$	$0.12^{[d]}$	$0.12^{[d]}$	$0.07^{[d]}$

[a] Compound 1 was formally considered as the salt $[(Me_3Si)_2N=P-Cl]^+[Cl]^-$. 1 and 2a-c X = Cl, 4 X = N₃. [b] Q_{ct}^{tot} = charge transfer with respect to the $[(Me_3Si)_2N=P-X]^{n+}$ ion (X = Cl for 1, 2a-c and X = N₃ for 4), thus $Q_{cation} = 1 - Q_{CT}^{tot}$. [c] $Q_{CT}^{tot} = q(Cl^-)$. [d] $Q_{CT}^{tot} = 1 + \Sigma q(A_i)$ with the A_i atom of the anion. [e] $q(N_{azide,salt}) = -0.72$ versus $q(N_{azide,cat}) = -0.70$.

The editorial office apologizes for this mistake.